
The Relevance of Ordering
Doing the warp is called ordior in Latin and is the basis of all words used to

speak of ordering or sometimes even laws (ordinance). The French word for

computer: ordinateur, is derived from this word for warping threads.

If one knows about the complexity of weaving patterns and pictures it is no

wonder that weaving terminology and recent terminology on ordering,

regulating, and measuring are connected. At first sight the loom of antiquity

looks primitive, but it works not only in making simple weaves but even

patterned ones, pictures and double weave. One of the oldest finds of warp-

weighted-loom depictions up to date shows a very complicated pattern with

geometric motives. But in weaving every geometric motive assigns an

arithmetic task: it has to be transformed into number ratios according to the

dualistic up and down of the warp-threads. Furthermore it has to fit into the

width of the warp if it is to repeat in an aesthetic way. Therefore pattern

weaving requires good knowledge of rules for divisibility of numbers. And if

the density of warp and weft ist different you have to master the rules of

proportionality too.

Cyprian plate with depiction of a loom, ca. 850-750 b. C, Antikensammlungen

University of Bonn

The Loom of Ancient Greece
Weaving means to stretch out threads parallel (the warp) and to pass another

thread (the weft) by going over and under each warp-thread. Often a rod

(shed bar) is used to lift every other warp-thread which makes the work a little

bit easier.

Today warp-threads of great length are wound around a warp beam and the

cloth is produced ten marks a meter and rolled up continually. From early

depictions of ancient looms we may learn that warp-threads were not rolled

up this way. Furthermore they are fixed on the same beam where the cloth is

hanging from. Some amounts of warp-threads are gathered and stretched out

by a weight that gives the tension that is necessary for weaving. The loom is

standing upright and was named histos orthios (tela recta with the Romans)

literally speaking: (up)right loom.

The following figure shows a diagram with the most important parts of this

loom and their names. If the heddle bar (kanon) is not lifted and rests on the

warp there will be a natural shed as one half of the threads will be held by the

lower rod named kairos. If the weaver lifts the kanon all the other threads will

pass through and make the countershed.

The special textile meaning of the word kanon (heddle bar) as part of the

loom ist much older than the transferred sense (canon, rule) and can be

found as early as Homer‘s Ilias. The kanon provides the regular structure of

the weave and his name/word was transferred to other tools for ordering and

regulating as they are used by musicians and architects. The latin word for

heddle bar: regula, is known as basis of the words „rule“ and „ruler“ down to

the present day. And the shuttle, penion in Greek, is radius in Latin. To fix the

warp-threads to the kanon commonly a stable thread of linen was used,

named linum which we nowadays find in line (Latin: linea) and the German

word „Lineal“ (Latin: regula).

Diagram of a Greek warp-weighted loom with names of important parts.
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Distinctive Features of the Heading-Band 

A distinctive feature of the warp-weighted loom makes patterning the cloth at

once difficult and easier. The warp-threads are not fastened directly to the

warp-beam. First a band was woven as long as the later cloth should be wide.

The weft of this band is stretched out on one side of the band as long as the

later cloth should be long. This band with the loose threads was attached to

the warp- or cloth beam and the former weft was used as warp by stretching

the threads by loom weights.

By weaving the band the warp-threads have been grouped: the even ones

and the odd ones in separate bundles as you may learn from a textile find of

Stavanger in Norway (see below, left). The band was integrated into the

weaving and elongated as selvedge. When the cloth was ready there was no

need for cutting. Hems and edges are an integral part of the fabric from the

start of weaving.

That means the patterns have to fit into this heading-band from the start. And

it means that the weaver has to consider what follows for patterning the whole

cloth. If the number of weft threads in the heading band (and this is the

number of warp threads for the cloth) ist a prime number, no repeat of pattern

will ever fit. And it is evident that warp-thread numbers with much divisors will

do best.

Even if the method of using a heading-band to us looks like a handicap on

first sight it might be thus helpful. Most textiles of antiquity show elaborately

decorated borders. In some cases you may read from such borders directly

the divisor of the number of warp-threads, because it is a multiple of the

threadcount of the pattern (if the pattern is woven completely and does not

break in the end). A reconstruction of such a fabric was done in the exhibition

„Penelope rekonstruiert“ and the band has a running dog with a pattern of 8

threads. Are they woven without break the weaver knows that the later warp-

threads will be divisible by eight, four and two and he may choose an

according pattern for the cloth.

Heading-band from Stavanger Reconstructed heading-band with

running dog

Dyadic Arithmetic

In Greek Antiquity there was a special kind of arithmetic that makes it very

easy to handle such problems of divisibility: the arithmetic of odd and even

numbers, sometimes called dyadic (that means: two-value) or pythagorean

arithmetic. Therein numbers are classified by their characteristics in divisibility

and the theorems of this theory tell us how to generate numbers with certain

divisibility-characteristics or they tell us how to make conclusions on the

characteristics of the generating numbers from an existing one.

It is assumed that the philosopher Pythagoras developed this number theory

out of harmonies in music and Iamblichos tells the following story on this

discovery: Pythagoras once walked by a forge „where he heard by a divine

chance hammers beating iron on an anvil, and making mixed sounds in full

harmony with one another, except for one combination.“

Becoming curious on the cause he

went in, weighed the hammers, went

home, and started the following

experiment: „From a single peg fixed to

an angle between two walls … he

suspended four strings of the same

material, of the same number of

strands, of equal thickness, and of

equal torsion. And from each string he

hung one weight by attaching the

weight at the bottom and making

certain that all the strings had equal

length.“

This description will also fit as a description to build up a warp-weighted loom.

And the italian musician Gaffurio imagined this instrument of discovering

harmonies in just this way (see picture above). It looks like a warp-weighted

loom lying on a table for better handling.

But the nice story told by Iamblichos is not able to explain the discovery of all

the theorems and proofs of dyadic arithmetic that are handed down to us by

Euclids book Elements. Number representation in times of Pythagoras made

no use of a place value system that makes it easier to discover divisibility

rules. Even here a cloth on a loom with its countable pattern-threads would be

more convenient than the letters the Greek used for numbers. Was the warp-

weighted loom the starting-point of dyadic arithmetic?

Pythagoras assumed that all things wer made of numbers. This concept of

numbers has already been a questionable issue in antiquity. Aristotle made

fun of this when he wrote on the Pythagorean called Eurytos that he

„determined what is the number of what object and imitated the shapes of

living things by pebbles after the manner of those who bring numbers into the

forms of triangle or square“. These pebbles or psephoi as the Greek called

them, are held to be the provenience of dyadic arithmetic.
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The Pebbles
How have these pebbles been used? According

to Thales a number is a texture of units. So the

pebbles may be used as units to build a texture

of a certain number of these units and to give a

certain shape or form to this texture.

Then you may name numbers after the forms which you can build of them.

For example triangle numbers (3, 6, 10 etc.), square numbers (4, 9, 16 etc.),

oblong numbers 6, 12 etc.) and so on.

According to the arrangement of the pebbles or their grouping by shades

(dark or light) it is possible to demonstrate quite complex issues that are

described nowadays by algebra. In Antiquity there was no chance to do this in

writing due to the lack of ciphers and place value system.

The summation formula

for example may be represented as a pebble

texture that makes it (more) easy to see the

formula as a combination of odd numbers

starting with the unit: The sum of successive

odd numbers beginning with one is a square

number. The Greeks had to say (see) it with

this words because they had no algebra in the

modern sense.

With Philolaos we find another example that may be represented by a pebble

texture: Each eightfold triangle number is by one unit smaller than a square

number. Today we would write:
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Some Definitions and Theorems of Dyadic 
Arithmetic
Some definitions

Def. 1 Unit is (that) according to which each existing is named one.

Def. 2 And number (is) a multitude composed of units. 

Def. 6 Even is the number (which can be) divided in half. 

Def. 7 And odd is the number (which can)not be divided in half, or which 

differs from an even number by a unit. 

Def. 8 Even-times-even is the number (which is) measured by an even 

number according to an even number. 

Def. 9 Even-times-odd is the number (which is) measured by an even 

number according to an odd number. 

Def. 10 Odd-times-odd is a number (which is) measured by an odd number 

according to an odd number.

Some theorems (propositions)

Prop. 21 If any multitude whatsoever of even numbers is added together then 

the whole is even. 

Prop. 22 If any multitude whatsoever of odd numbers is added together, and 

the multitude of them is even, then the whole will be even . 

Prop. 24 If an even (number) is subtracted from an(other) even number then r 

the remainder will be even.

Prop. 31 If an odd number is prime to some number then it will also be prime 

to its double. 

Prop. 32 Each of the numbers (which is continually) doubled, (starting) from a 

dyad, is an even-times-even (number) only. 

Prop. 33 If a number has an odd half then it is an even-times-odd (number) 

only. 

Prop. 34 If an number is neither (one) of the (numbers) doubled from the 

dyad, nor has an odd half, then it is (both) an even-times-even and 

an even-times-odd (number).

Aias and Achill doing a board game – perhaps with pebbles? (Drawing from 

an antique vase)
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The greatest achievement of Greek mathematics is to give it a straightforward

logical and formalistic system. Crucial to this are two discoveries or inventions:

the method of indirect proof and the discovery of incommensurable quantities: in

nowadays terms the fact that there are ratios that may not be representable by

integers (what we now call irrational numbers). The best known example is the

ratio of side and diagonal of a (unit) square. This incommensurability is proved

within Euclids Elements. And this proof works indirect by using the dualistic

number properties of even and odd.

Assume that there is a common measure of the square-side a and the diagonal b.

Then you can deduce by the theorem of Pythagoras (in this case: a2 = 2b2) that b

is as well even as odd. And this contradiction proves that the opposite of the

assumption is correct.
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The proof makes use of the presupposition that two numbers might be

reduced to terms that are prime to each other. This is not an easy condition

and mathematicians assume that there has been a pebble proof for the

incommensurability in the square that worked without it.

In this case you will have to double a square as to make a new square or

otherwise divide a square into two squares of equal size.

The solution is only found by tha diagonal that Socrates draws now. This

makes 4 triangles of two feet in area. These are the eight feet searched for and

the diagonal is the according length.

This lesson not only shows how the problem is solved geometrically. It also

shows the difficulty to detect a number for the length of the diagonal. But

Socrates does not mention this Problem.

Incommensurable Quantities and the Indirect Proof

Let‘s have a Geometry Lesson with Socrates: Double a Square!

The famous „Geometry-Lesson“ in Plato‘s Dialogue Menon gives just this type of

Square-doubling. An untaught boy or slave has to solve this task and Socrates

wants to show by this example that mathematical ideas are innate in everyman.

Socrates draws a square of two feet side-length (see first drawing on the right),

divides it into two halfs (drawings 2 and 3), and asks for the area. The boy

answeres: 4 feet (we would say 4 square-feet). Now he is asked to double the

square and he answeres correctly: 8 feet, but for the drawing he proposes the

doubling of the side-length. Socrates now gives the hint that the square-area will

then be 16 feet (Zeichnung 4) and the boy reduces the length to three feet. But

for the area this gives 9 feet and in the end the boy assigns: „It won‘t work.“

Let us suppose the boy went home with pride in

his new knowledge and meets his sister with

her selfmade dress showing just the figure of

the lesson he survived. Now he wants to know

the answer as number, counts the thread

crossings – and the numbers are wrong.

His sister knows the reason: If she plans the

patter she has to start with the four-times

Square of Socrates‘ drawing, giving the width of

the motiv.

To daoble a Square in Weaving

The thread count of this repeat is even because it is a double length. But with

an even number of threads she may not weave the spearheaded square in

the center. There is no thread in the middle to make a thread cross as starting

point of the diagonals. (see below, left drawing).

But if the thread count of the repeat is odd (what will be contradictory to the

double length), you can make a perfect solution (see below, drawing in the

middle). But the spearheaded square has one thread crossing too much –

and this was what the boy hat counted.
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Calculated Flowers and Leaves
A cloth woven on such a loom may show flowers and leaves even though the

whole textile is made of the same white threads. It is just the up and down of

the warp-threadds that makes the picture as effect. The rays of light break

different when the direction of thread is different. And the flowers and leaves

that we see are no accident but determinated by the countable and digital

order of threads that is given by a the dualistic up-and-down principle.

Flowers and Leaves on a Damask Tablecloth. Detail on the right.

Jacquard and Babbage
Dinner parties at Charles Babbage have been an important meeting point for

intellektuals in 19th Century London. Everyone knew he was working on

computational machines and loves to present his advances on this occasions.

On one of these soirées Babbage showed a portrait of the French inventor

Joseph-Marie Jacquard and said: „This picture is very helpful to explain the

nature of my calculating engine.“

The picture was woven on a loom with

a control system invented by Jacquard

himself. This machine replaced the

harness by a control instrument that

used punched cards and even made

the drawboy dispensable. Now one

weaver alone could make these highly

complex weaves without taking care of

the pattern. All the complexity formerly

hidden in the harness cords ist now

controlled by the punched holes of

cards.

Jacquard-woven Portrait

of Joseph-Marie Jacquard

Ada Lovelace who made econcepts for programming the second one of

Babbage‘s calculating machines, the Analytical Engine, gave the following

description of its function: it „weaves algorithmic patterns, just as the

Jacquard-Loom weaves flowers and leaves.“

Leibniz and China
In january 1697 the mathematician and philosopher Gottfried Wilhelm Leibniz
sent a letter to the emperor of China describing a dyadic arithmetic of zero
(nihilum) and one (God‘s word). He wrote: „Anything may be solved with this
method.“ And he also prefigures „that with this dyadic one can build a
computing machine.“

All weaving is done in dyadic terms. When the weft comes across the warp

there is only to chose between zero (warp-thread down) and one (warp-

thread up). And as damask weaving shows: anythig may be depicted with this

method.

As early as the first centuries AD pictured cloth was produced mechanically in

China on drawlooms. They work with an additional thread system that allows

to lift certain groups of warp-threads. A draw boy was necessary, sitting on

the harness and lifting the according thread after each treadle the weaver

used (the third person in the picture below has to repair broken warp

threads).

Italian workshops for weaving silk have been famous for this Drawloom-Work

in the 15. Century. Not only the drawboy makes it costly. At first there has to

be drawn a draft or point paper design with every single thread cross. Then

the loom is set up according to this point paper design, that means the warp

is set up with the shafts and the harness. The threads of the harness are

grouped according to every weft line. With complicated patterns the setting up

of the loom sometimes took a whole year.

Chinese Drawloom, ca. 17. Century.
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Machines for Punching Cards
Punching the cards according to the point paper of a decorated cloth remains

a time-consuming task. But the cards can be used repeatedly. It was the

principle of punched tape that made Jacquards invention a success and

proved to be highly effective for controlling machines. Herman Hollerith used

the controlling by punched cards for statistical purposes on a large scale. And

here begins the success story of modern computers that may represent

almost anything on the basis of a dual code of zero and one. And similarly as

woven pictures can do it since some thousand years by the dual code of

lifting or leaving the warp-threads.

Loom with Jacquardmachine, The punched card are sewn together to a long

tape rolling over the prism for scanning.
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Machine for
punching Jacquard-
cards, Munichs Silk-
Art Weaving
Manufacture
Gerdeisen, about
1920, Foto: 
Deutsches Museum, 
Munich
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Bröselmachine and Jacquardmachine
The Jacquardmachine war the most successful machine of this kind – but it

has not been the first one. In the Mühlviertel in Upper Austria weavers have

already worked without drawboy on the beginning of the 18th century. They

used an wooden engine named Bröselmachine. Wooden logs (Brösel?) were

glued onto a small tape of linen and this tape was scanned by metal needles

to lift the according warp thread bundles.

Diagram of Bröselmaschine after Kinzer

The Bröselmachine, Weaving Museum Haslach, Photo: Harlizius-Klück

Jacquards punched cards are made with the same principle, but instead of

the log the scanning of the metal platines reacts on the holes in the card.
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